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Abstract 

Non-invasive electrical stimulation in the form of neuromuscular electrical stimulation (NMES) 
and functional electrical stimulation (FES) has been documented as an optional assessment and 
treatment technology for decades. In contrast, translation of the robust clinical evidence supporting 
the effectiveness of FES’ enhancement of muscle force generation and adding to the recovery of 
motor control following damage to the brain appears limited. Furthermore, enabling many patients 
to regain locomotion ability though utilization of FES as a standard care option in rehabilitation 
medicine remains unmet. This perspective evolved over years of collaborative experience in clinical 
research, teaching, and patient care having a common goal of advancing patients’ rehabilitation 
outcomes. The clinical successes are supported by repeated evidence of FES utilization across the 
life span, from toddlers to elders, from hospitals’ critical care units to the home environment. The 
utilization include managing multiple defi cits associated with the musculo-skeletal, neurological, 
cardio-pulmonary, or peripheral vascular systems. These successes were achieved in no small 
part because of the technological advancement leading to today’s wearable wireless FES systems 
that are being used throughout the continuum of rehabilitation care. However, failures to benefi t 
from FES utilization are likewise numerous, collectively depriving most patients from using the 
technology to maximize their rehabilitation gains. The most critical failures are both clinical and 
technological. Whereas numerous barriers to NMES and FES utilization have been published, the 
focus of this perspective is on barriers not considered to date.
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Functional electrical stimulation (FES) is a well-established technology aimed 
to enhance recovery after damage to the brain, spinal cord, musculoskeletal, and 
peripheral vascular systems. FES is currently utilized in clinical practice around the 
world and has been undergoing reϐinements over the years taking advantage of the 
fast-moving evolution in electronic hardware and software, as well as the remarkable 
proliferation of biocompatible wearable materials. Recent clinical deployment of 
wearable wireless FES systems marked a turning point toward the goal of establishing 
FES as a treatment option throughout the continuum of care in rehabilitation medicine. 
Typical FES is comprised of a stimulator delivering via non-invasive surface electrodes, 
electric pulses of very short duration, typically lasting 10-500 μsec. These pulses excite 
peripheral sensory and motor nerves thereby causing contraction of skeletal muscles 
while concurrently modulate neural connectivity throughout the central and peripheral 
neural networks [1-4]. In numerous peer-reviewed scientiϐic clinical publications, 
these stimulators are termed neuromuscular electrical stimulators (NMES). When 
these stimulators are applied during the performance of speciϐic tasks or during daily 
functions, the term FES rather than NMES describes more appropriately the utilization 
of these stimulators. A detailed discussion of utilizing FES in clinical practice has been 
published by Alon elsewhere [5].

The mechanisms that govern the application of noninvasive FES/NMES have 
been delineated and clearly described in published clinical trials. A cascade of events 
recognized at the molecular level include up-regulation of IGF-1, modulation of MuRF-
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1 (a muscle-speciϐic atrophy-related gene), and up-regulation of relevant markers 
of differentiating satellite cells leading to extracellular matrix remodeling, which 
may restore the mechanical forces of the trained skeletal muscle, maintain satellite 
cell function, and reduce ϐibrosis [6,7]. Other studies demonstrated that electrically 
induced contractions signiϐicantly increase total RNA content and reduce protein 
degradation [8], increase body cell mass, attenuate reduction of intracellular water, 
alleviate arterial hemodynamic disturbance [9], reduce tumor necrosis factor (TNF-
alpha) that is associated with systemic inϐlammation, and increase beta-endorphin 
levels[10]. The enhancement of these molecular and cellular metabolic events are all 
markers supporting long-established clinical data demonstrating that using FES is 
likely to result in signiϐicant muscle strength gains whether the strength deϐicits were 
a result of damage to the musculoskeletal, neurological or cardiovascular-pulmonary 
systems[11-15]. Moreover, FES activation of skeletal muscles has been shown to 
enhance arterial, venous and lymphatic ϐlow [16-19], while concurrently transmitting 
multimodal afferent signals to multiple sites within the brain’s regions of interest 
(ROI) [1-4]. Collectively, the science supporting the mechanisms and clinical beneϐits 
of utilizing FES in the management of physical and functional deϐicits is robust, yet FES 
utilization as a common treatment option in daily clinical practice is limited at best.

FES as a clinical training tool

Traditionally, FES has been utilized predominantly to promote lower and upper 
extremity functions [11,12,16,20-24] and to a lesser extent to activate the abdominal 
and torso muscles [8,25,26]. For many years, FES systems included a battery-powered 
stimulator connected with lead wires to the stimulating electrodes and a wired external 
trigger to synchronize muscle contraction with the functional activity [27,28]. Owing to 
advancements in hardware, software, and biocompatible materials, patients and clinicians 
begun utilizing what is generically referred to as wearable, wireless FES systems [22,29-
31]. These latest systems are self-administered and controlled by each patient. Having 
low proϐile, they can be worn comfortably under clothing while functioning in the home 
and the community. The utility of FES can be categorized as either FES-dependent, which 
enables the patient to perform speciϐic tasks or functions that they cannot perform as 
well without FES, or FES–independent (re-learned) where the patient is using the FES 
for a ϐinite period to minimize impairments and dysfunctions while re-learning how to 
perform eventually the speciϐic tasks and functions without FES. Initially, when patients 
begin training with FES, they all depend on the FES to walk better or make better use 
of the paretic extremity [32,33]. Over time, some patients should reach the goal of 
independence and no longer need the FES while others will continue to depend on the 
FES for the foreseeable future. Failing to reach independence of FES is most likely an 
indication that the connectivity of the sensory-motor networks within the brain, the 
spinal cord or both, were not re-modeled sufϐiciently to the pre-damage connectivity. 

The failure to recover pre-damage connectivity using FES is likely to originate in part 
from intrinsic, potentially non-reversal damage to the central and peripheral body’s 
systems. These damages are not considered in this perspective nor is the uncounted 
number of patients who for various reasons are not candidates for FES intervention. 
In a recent paper, Auchstaetter and colleagues identiϐied a number of barriers to the 
utilization of FES by physical therapists in clinical practice [34]. These barriers as well 
as practical issues including patients’ tolerance, or reimbursement challenges are 
likewise not the focus of this paper. This perspective focus on patients who should, but 
are not screened as potential candidates to beneϐit from training with FES. A number of 
shortcomings of current methodologies are likely to impact adversely these patients. 
For example, a typical consort diagram from a multi-center randomized clinical trial 
indicated that only about 10% of stroke survivors met inclusion criteria [35,36]. As 
a result 90% of stroke survivors are not likely to beneϐit from the study’s published 
results. Similarly, the method of classifying responders and non-responders should be 
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challenged. The intra and inter patients’ variability responding to physical rehabilitation 
interventions including FES is well known [37]. Accordingly, changing the focus from 
group response to each individual patient’s needs and perception of beneϐits, should 
increase considerably the number of beneϐiciaries from FES training [38]. As written 
elsewhere in details [5], this author proposal to clinicians and researchers is to adopt 
a personalized clinical approach. The approach must be predicated on the ability to 
identify each patient’s physical functional deϐicits, and utilize FES to restore in part or 
in full her/his functional ability. As stated above the multitude of other documented 
barriers are outside the scope of this perspective. 

Whereas advanced FES systems are wearable, wireless and can be applied 
independently by the user, they all provide a predetermined stimulation intensity during 
ambulation or upper extremity use [24,29,30,32,33]. These open loop technologies 
induce strong muscle contraction regardless of how much contraction the patient can 
generate cortically or subcortically-meaning independent of FES. This may explain 
why most patients remain FES dependent even after months and years of use. A likely 
pathway to overcome such shortcoming and achieve functional use of the upper 
extremity or locomotion and no longer depend on FES, or to maximize FES-dependent 
functionality, is to develop a closed-loop system. Such system uses iterative algorithms 
(repetitions of sequence of steps) to control the desired level of the electrically induced 
contraction of the target muscles [20,39-41]. Common requirements to formulate 
iterative algorisms is to construct the desired movement pattern that characterize 
walking or non-walking daily functions such as standing up and sitting down. Algorisms 
are also being developed for reaching, grasping, moving and releasing objects with the 
upper extremity. Furthermore, the guiding principle to improve recovery of connectivity 
within the brain’s motor network thereby enabling control of activities of daily living 
(ADL), include application of appropriate closed-loop control. Having such control 
enables each patient to use her/his internal sensory-motor control system and add 
FES only to complete the portion of the motion the internal control failed to achieve.

Iterative algorisms depend on input signals typically obtained using non-invasive 
electromyography (EMG) or motion sensors [42-46]. Less common is the use of 
electroencephalography (EEG) derived signals to control the FES [47,48]. Both EMG 
and motion sensing inputs can be obtained from the paretic limb or remotely from 
non-paretic locations. Advancement in EMG processing, speciϐically evoked EMG 
recordings and miniaturization of necessary hardware meet the demand for combining 
it with FES as a wireless wearable system offering continuous closed-loop control of 
the FES induced contraction [43,49]. Few researchers are “bridging” wirelessly the 
EMG signals from non-paretic muscles to remotely increase or decrease the electrically 
induced contraction [42]. The primary limitation of using EMG or EEG-driven control 
signals include the addition of hardware circuitry, size, battery drain, and cost of the 
system. Using the nonparetic to control the paretic upper extremity an approach 
offered by Wang et al. [42], or Knutson and colleagues [21], limit the nonparetic 
limb from participating in functional ADL because of the continuous need to control 
proportional opening, closing, and moving the paretic limb. 

Inertial measurement units (IMU) are motion sensors that may prove the preferred 
option for close-loop control of FES [41,50,51], these motion sensors are miniature 
in size, can be incorporated within the same electronic circuit of the FES [16], can 
wirelessly communicate with other sensors of the system, and consume very little 
power. Using two or more motion sensors can provide continuous kinematic data, 
speciϐically of individual joint range of motion (ROM) during the performance of 
speciϐic task or daily function [41,52,53]. The iterative approaches to manage the 
motion sensors data can be used to control the intensity of stimulation needed to 
complete the task [44,54]. Unfortunately, the above referenced studies are conducted 
in laboratory settings and their utility as a commercial product in clinical practice is 
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yet to be tested. Commercially available systems use the motion sensors as a trigger 
(on-off) to activate the FES at the correct timing of the task or function, but not to 
control the desired intensity of stimulation [22,24,29,30]. Such limitation may explain 
why most patients continue to be FES dependent despite several years of daily use.

Other limitations of the latest wearable, wireless FES systems include the low 
resolution of induced muscle contraction, the absence of veriϐiable algorithms to 
expand the utility of FES to train non-walking daily functions including training to 
stand up and sit down independently. The limited availability of clinically valued 
coupling of FES with other rehabilitation technologies such as EEG controlled FES 
[55,56], or wearable robots and virtual reality systems [57], is also recognized in the 
literature [36]. Attempts to improve the resolution of FES induced muscle contraction 
by using multiplexers and arrays of small electrodes [39,58] or manipulation of pulse 
parameters [1] have yielded some interesting discoveries and electronic innovations. 
But these research efforts have also failed so far to become a viable commercial 
product in rehabilitation medicine. Collectively, the main challenge researchers are 
facing is to design, construct, fabricate, and bring to the market reliable, cost-effective, 
and durable closed-loop controlled wearable wireless FES systems.
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