Postural Stability Induced by Supervised Physical Training may improve also Oxygen Cost of Exercise and Walking Capacity in Post-Menopause, Obese Women

Main Article Content

Fernanda Velluzzi
Massimiliano Pau
Andrea Loviselli
Raffaele Milia
Daniela Lai
Daniele Concu
Gianmarco Angius
Abdallah Raweh
Andrea Fois
Alberto Concu

Abstract

We utilized the training impulses method to numerically quantify the volume of physical exercise to be prescribed to postmenopausal obese women in such a way of obtain the best possible improvement of their health-related quality of life. Nine women (57±4 years, 89±2 kg, 157±9 cm) carried out 3-months of exercise training (3 session/week each lasting 80 min) under the supervision of skilled operators which indirectly calculated the volume of physical exercise by assessing heart rate values while patient exercised and making sure that the workload corresponded to 50-60% of their maximum oxygen uptake. Before and after training anthropometric, functional and biomechanical variables were assessed. After training patients shoved statistically signifi cant (P<0.05) reduction in body mass (-2%) and body mass index (-4%), waist circumference (-4%), total (-6%) and LDL (-26%) serum cholesterol and glycaemia (-8%), diastolic arterial blood pressure (-14%), and oxygen cost (-14%) at the maximum workload during incremental cardiopulmonary test, the sway area from unipedal stance (right leg) of 20 s on a pressure platform (-49%), while increased both free fat body mass percentage (+3%) and space covered during the six minute walk test (+11%). It was concluded that, when an exercise protocol is carried out by postmenopausal obese women and the volume of exercise is instrumentally controlled by experienced operators, it could result in an effective benefi t on the quality of life of these patients since they ameliorate some critical anthropometric and functional parameters.

Article Details

Velluzzi, F., Pau, M., Loviselli, A., Milia, R., Lai, D., Concu, D., … Concu, A. (2017). Postural Stability Induced by Supervised Physical Training may improve also Oxygen Cost of Exercise and Walking Capacity in Post-Menopause, Obese Women. Journal of Novel Physiotherapy and Rehabilitation, 1(1), 001–011. https://doi.org/10.29328/journal.jnpr.1001001
Research Articles

Copyright (c) 2017 Concu et al.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Greve J, Alonso A, Bordini AC, Camanho GL. Correlation between body mass index and postural balance. Clinics. 2007; 62: 717-720. Ref.: https://goo.gl/HZ0NXE

Kejonen P, Kauranen K, Vanharanta H. The relationship between anthropometric factors and body-balancing movements in postural balance. Arch Phys Med Rehabil. 2003; 84: 17-22. Ref.: https://goo.gl/2WiVkE

Hue O, Simoneau M, Marcotte J, Berrigan F, Doré J, et al. Body weight is strong predictor of postural stability. Gait Posture. 2007; 26: 32-38. Ref.: https://goo.gl/a4iD1D

Melzer I, Kurz I, Oddsson LI. A retrospective analysis of balance control parameters in elderly fallers and non-fallers. Clin Biomech. 2010; 25: 984-988. Ref.: https://goo.gl/DflVOx

Hita-Contreras F, Martinez-Amat A, Lomas-Vega R, Alvarez P, Mendoza N, et al. Relationship of body mass index and body fat distribution with postural balance and risk of falls in Spanish postmenopausal women. Menopause. 2013; 20: 202-208. Ref.: https://goo.gl/ajlzoN

Tesdale N, Hue O, Marcotte J, Berrigan F, Simoneau M, et al. Reducing weight increases postural stability in obese and morbid obese men, Int J Obesity. 2007; 31: 153-160. Ref.: https://goo.gl/aiNdfX

Bellafiore M, Battaglia G, Bianco A, Paoli A, Farina F, et al. Improved postural control after dynamic balance training in older overweight women. Aging Clin Exp Res. 2011; 23: 378-385. Ref.: https://goo.gl/UGXHya

Smith-Ryan A, Trexler ET, Wingfi eld H, Blue M. Effects of high-intensity interval training on cardiodynamic risk factors in overweight/obese women. J Sports Sci. 2016; 34: 2038-2046. Ref.: https://goo.gl/WR5Kvn

Dahjio Y, Noubiap JJN, Azabji-Kenfack M, Essouma M, Loni E, et al. Impact of a 12-week aerobic exercise training program on anthropometric and metabolic parameters of a group of type 2 diabetes Cameroonian aged > 50 years. Ann Transl Medicine. 2016; 4: 364. Ref.: https://goo.gl/VnBO6N

Tocco F, Sanna I, Mulliri G, Magnani S, Todde F, et al. Heart Rate Unreliability during Interval Training Recovery in Middle Distance Runners. Journal of Sports Science and Medicine. 2015; 14: 466-472. Ref.: https://goo.gl/9wtdaO

Ghiani G, Marongiu E, Melis F, Angioni G, Sanna I, et al. Body composition changes affect energy cost of running during 12 months of specifi c diet and training in amateur athletes. Appl Physiol Nutr Metab. 2015; 40: 938-944. Ref.: https://goo.gl/59NBoz

Sturm W, Sandhofer A, Engl J, Laimer M, Molnar C, et al. Infl uence of visceral obesity and liver fat on vascular structure and function in obese subjects. Obesity. 2009; 17: 1783–1788. Ref.: https://goo.gl/SKx2jI

Mosca L, Manson JE, Sutherland SE, Langer RD, Manolio T, et al. Cardiovascular disease in women: a statement for healthcare professionals from the American Heart Association. Circulation. 1997; 96: 2468–2482. Ref.: https://goo.gl/aIiabx

Anfossi G, Russo I, Doronzo G, Pomero A, Trovati M. Adipocytokines in atherothrombosis: focus on platelets and vascular smooth muscle cells. Mediators Infl amm. 2010; Article ID 174341, 26 pages. Ref.: https://goo.gl/RoF77q

Al Suwaidi J, Higano ST, Holmes DR Jr, Lennon R, Lerman A. Obesity is independently associated with coronary endothelial dysfunction in patients with normal or mildly diseased coronary arteries. J Am Coll Cardiol. 2001; 37: 1523–1528. Ref.: https://goo.gl/9DjR2k

Mason C, Brien SE, Craig CL, Gauvin L, Katzmarzyk PT. Musculoskeletal fi tness and weight gain in Canada. Med Sci Sports & Exer. 2007; 39: 38–43. Ref.: https://goo.gl/cXZ4CH

Trabka B, Zubrzycki I Z, Ossowski Z, Bojke O, Clarke A, et al. Effect of a MAST exercise program on anthropometric parameters, physical fitness, and serum lipid levels in obese postmenopausal women. J Hum Kinet. 2014; 42: 149-155. Ref.: https://goo.gl/umJRrR

Morton RH, Fitz-Clarke JR, Banister FW. Modelling human performance running. J Appl Physiol. 1990; 69: 1171-1177. Ref.: https://goo.gl/y17Hc7

Ciuti C, Marcello C, Macis A, Onnis E, Solinas R, et al. Improved aerobic work capacity by detraining in basketball players mainly trained for strength. Sports Med Train Rehab. 1996; 6: 325-335.

Velluzzi F, Tocco F, Deledda A, Lai D, Loviselli A, et al. Training impulses: a method to quantify exercise intensity in postmenopausal obese women, Proceedings of the IEEE Symposium on Medical Measurements and Applications. May 15-18, Benevento, Italy. 2016; PP 481-486. Ref.: https://goo.gl/qa3O0E

Elrik Y, Meldrum DR, Howard LJ. Estrogen levels in postmenopausal women with hot fl ashes. Obstetrics and Ginecology. 1982; 59: 403-407. Ref.: https://goo.gl/99JVgr

Seven A, Yuksel B, Kabil Kucur S, Yavuz G, Polat M, et al. The evaluation of hormonal and psychological parameters that affect bone mineral density in postmenopausal women. Eur Rev Pharmacol Sci. 2016; 20: 20-25. Ref.: https://goo.gl/oV84Me

Knowler WC, Barrett-Connor E, Fowler SE, Hamman RF, Lachin JM, et al. Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. N Engl J Med. 2002; 346: 393-403. Ref.: https://goo.gl/ANgk0w

Einright PL. The six-minute walk test. Respiratory Care. 2003; 48: 783-785. Ref.: https://goo.gl/emHiFP

Crapo RO, Enrught PL, Zeballos RJ. ATS statements: guidelines for the six-minute walk test. Am J Resp Crit Care Med. 2002; 166: 111-117. Ref.: https://goo.gl/jFZPJl

Pau M, Arrippa F, Leban B, Corona F, Ibba G, et al. Relationship between static and dynamic balance abilitiers in italian professional and youth league soccer players. Phys Ther Sport. 2015; 16: 236-241. Ref.: https://goo.gl/LKFtFk

Willems T M, De Ridder R, Roosen P. The effect of fatigue on plantar pressure distribution during running in view of running injuries. J Foot Ankle Res. 2012; 5(Suppl 1): P33. Ref.: https://goo.gl/X2HLMZ

Crisafulli A, Tangianu F, Tocco F, Concu A, Mameli O, et al. Ischemic preconditioning of the muscle improves maximal exercise performance but not maximal oxygen uptake in humans. J Appl Physiol. 2011; 111: 530-536. Ref.: https://goo.gl/Dg6hiL

Krzywinski M, Altman N. Points of Signifi cance: Visualizing samples with box plots. Nature Methods. 2014; 11: 119-120. Ref.: https://goo.gl/jiHnPs

Streit M, Gehlenborg N. Points of View: Bar charts and box plots. Nature Methods. 2014; 11: 117. Ref.: https://goo.gl/AHCdd6

Concu A. ‘Cardiovascular adjustments during exercise: Points and counterpoints’, A Crisafulli & A Concu, Research Signpost,Transworld Reseach Network, Kerala, India, New Insight into Cardiovascular Apparatus during Exercise. Physiological and Physio-pathological Aspects. 2007; 61-83.

Alpert MA, Omran J, Bostick BP. Effects of obesity on cardiovascular hemodynamics, cardiac morphology and ventricular function. Curr Obes Rep. 2016; 37: 424-434. Ref.: https://goo.gl/lzhqul